Monday, 9 November 2015

AND FOR NOW THE INDIAN SUMMER GOES ON AND ON BUT AT NIGHT THE OLD PEOPLE FROM THE OLD WEST-COM CIVILIZATION SLOWLY BEGINS TO FREEZE - DA NATUREZA DA PROCURA DO SANTO GRAAL - AS MAIORES ANOMALIAS POSITIVAS SÃO NO MAR DO NORTE JUNTO A NARVIK UNS 9ºC E AS MENORES OU AS MAIORES NA NEGATIVA SÃO NA NAMÍBIA UNS - 9ºC PROCURA-SE UM AUMENTO DE UMA DÉCIMA DE GRAU POIS O OCEANO É DAS COUSAS MAIS ESTÁVEIS QUE EXISTE E 34ºC SÓ NO MAR VERMELHO OU 35ºC NO GOLFO PÉRSICO UNS SÍTIOS QUE COMPETEM COM SUCESSO COM O ALGARVE ATÉ CAIR UM AVIÃO NO RESTO DO MUNDO UM MAR TROPICAL ACIMA DOS 28ºC É COUSA MUY RARA E É A ZONA TROPICAL QUE TEM AS ÁGUAS MAIS QUENTES PARA OS TURISTAS E NÃO A EQUATORIAL....E VAI DAÍ OS RUSSOS PROCURAM ALTERNATIVAS AO MAR VERMELHO EM NOVEMBRO E AQUI NÃO AS ENCONTRAM DE CERTEZA E NO MAR DO NORTE A ÁGUA COMEÇA A GELAR E TENDO EM CONTA QUE A ÁGUA COM SAL GELA ABAIXO DOS 30,1ºF OU DOS - 1,9ºC PARA UMA SALINIDADE MÍNIMA DE 35%o 35 POR 1000.......O SLUSH JÁ COMEÇOU E ESPERA-SE UMA NOVA ANOMALIA DO VÓRTICE POLAR E UMA PROCURA DE PETRÓLEO E GÁS PARA AQUECER AS FRIAS GENTES DO NORTE E TAMBÉM VAI CHEGAR MAIS A SUL ....ECONOMICAMENTE O OUTONO-INVERNO DE 2015/2016 É CATASTRÓFICO PARA QUALQUER GOVERNO BASTA FAZER AS CON TÁSSE...À PROCURA DA BARATA TUTSI PROVAVELMENTE A MÁQUINA BIOLÓGICA MAIS PERFEITA QUE DEUS NA SUA INFINITA SABEDORIA CRIOU A BELEZA DESSE BICHO QUE SOBREVIVE A TODOS OS HOLOCAUSTOS MATA A BARATA TUTSI DIZEM OS HUMANOS E A BARATA TUTSI A TUDO SOBREVIVE.

10 VEZES MAIS RÁPIDA QUE UM SER



DITO HUMANO A BARATA TUTSI 



VIVE NUM CONTÍNUO ESPAÇO



TEMPORAL DIFERENTE DO NOSSO



NÃO SE PREOCUPA COM COUSAS




COMO GOVERNOS, ALIANÇAS




OU OUTRAS B-LOUQUICES



A BARATA TUTSI SABE QUE 



SOBREVIVERÁ A TUDO 


A BARATA TUTSI É UM BICHO DE FÉ


E NA FÉ PROCRIA 



ATÉ ENCHER  O MUNDO 




Tuesday, 1 September 2015

NO VOTO QUE BOTO NA PREGA DA NEGRA URNA DIURNA PONHO MUITO DISCRETO O PRETO NO BRANCO NUM TRANCO PRA QUEBRAR SE CALHAR O ENCANTO DO QUEBRANTO ....DO HIPNOVOTO TAMBÉM JESUS É DEVOTO E TODO O CARRASCO USA CAPUZ NO HIPNOVETO QUE É MAIS DISCRETO JÁ O HIPNOPUTO É ASTUTO E NO LONGE OU NO PERTO ESTÁ SEMPRE CERTO E NUNCA FICA NUM APERTO..mexiânica cromada e zinkada à pedrada de cavalo na veia

EM VERDADE VOS DIGO 

QUE NESTA SECA FRÁGUA

NÃO VEJO SOMBRA D'ÁGUA

NEM DE MÁGOA COSTA AMIGO

E SÓ NA FÉ CLARA E VERDADEIRA

NO VOTO  DEVOTO  E PERDIDO

NO VOTO COMPRADO OU PEDIDO

NESTA DEMO AFINAL A DERRADEIRA 

NO VOTO SE DESARMA A ALMA  CALMA

O VOTO EM TODO CÉSAR METE PALMA

OU LOUROS

OU OUTROS TEMPEROS 

NO VOTO DADO EM VÃO

NASCE PIEDADE E ATÉ PERDÃO

NO CAMINHO LONGE OU PERTO

FEITO NA CRUZ EM QU'ACERTO

NUNCA SERÁ CAMINHO CERTO 

Monday, 3 November 2014

DESDE 1 DE NOVEMBRO DE 1755 ....259 ANOS DE FALHANÇOS NAS PREVISÕES DO APOCALIPSE .....GLOBAL GEOLOGIC AND HYDROLOGICAL CHANGES

Beware the power of ....
Mental note's:
never park vehicle at DUNMOVIN, CA or it may not be dunmovin. ;)

OverwhelmingSilence Holy shit. 

or in simplified views
Oh shit.

THE GLOBAL WARMING Effects


MORE WTF AGW EFFECTS

Friday, 20 June 2014

SHEETED DYKE SWARMS - LAYERED GABBROIC ROCKS - FAULT ZONES - STOCKWORKS THAT DON'T WORK AND MASSIVE SULPHIDE DEPOSITS

The most common sulfide mineral in VMS deposits is pyrite, which is often associated with other sulfides such as pyrrhotite, chalcopyrite, sphalerite, and galena (Galley and others, 2007). Other possible nonsulfide minerals associated in VMS deposits include magnetite, hematite, and cassiterite; barite can be present as a gangue mineral. All these minerals have relatively high values of specific gravity (4.0–7.5 g/cm3; table 7–2), which is in strong contrast to the significantly lower densities measured in their sedimentary or volcanic host rocks. Thomas (2003) measured densities of 2.70–2.84 g/ cm3 for the host rock at the Bathurst mining camp.
Electrical Signature
Electrical methods are highly effective in identifying VMS targets because they respond to the electrical conductivity of the rocks and minerals, which can vary by 20 orders of magnitude (Grant and West, 1965). Electrical methods are unique in being able to detect such a large range of magnitudes; no other physical property has such a wide range. Because of this large potential range in values, a variety of electrical techniques have been developed that capitalize on these differences, such as measurement of conductivity, resistivity (the inverse of conductivity), induced polarization, electromagnetism, and gamma ray spectra (table 7–1). Electrical methods are currently the most used technique in surveying for VMS deposits; a variety of survey types (for example, MegaTEM, Titan24, and borehole techniques) are pushing the limits of detectable depth ranges.
Volcanogenic massive sulfide deposits have high conductivities (fig. 7–2B) exceeding 500 mS/m (millisiemens per meter) and are similar in magnitude to graphite and saltwater (Ford and others, 2007). Compared to igneous and metamorphic rocks with typical conductivities of <1 1="" 500="" a="" also="" and="" anoxic="" are="" as="" associated="" be="" between="" body.="" body="" br="" by="" can="" complicating="" conductive="" conductivities="" conductivity="" contain="" content="" contrast="" could="" definitive="" deposits.="" deposits="" difficult="" distinguish="" distinguishable="" economic="" effectively="" electromagnetic="" exploration="" factor="" from="" fully="" graphite="" highly="" horizons="" host="" however="" in="" increase="" introduced="" its="" m="" mask="" massive="" may="" ms="" noneconomic="" not="" of="" or="" ore="" other="" overlying="" physical="" potentially="" property.="" pyrite-rich="" pyrrhotite-rich="" reducing="" rock="" rocks="" sedimentary="" sediments.="" signal="" significant="" so="" some="" substantially="" such="" sulfide="" techniques="" that="" the="" themselves.="" thus="" to="" tools="" types="" typically="" unit="" useful="" vms="" water-rich="" water="" with="">Electrical resistivity surveys are useful in calculating the apparent resistivity of the subsurface at different depths resulting in the generation of cross sections of true resistivity (Ford and others, 2007). These can be used to produce three-dimensional geometries of ore bodies at depth. Resistivity surveys also are used to estimate the thickness of overburden, which
7. Geophysical Characteristics of Volcanogenic Massive Sulfide Deposits
By Lisa A. Morgan
118 7. Geophysical Characteristics of Volcanogenic Massive Sulfide Deposits
Figure 7–1. Schematic diagram of the modern Trans-Atlantic Geothermal (TAG) sulfide deposit on the Mid-Atlantic Ridge, depicting a cross section of a volcanogenic massive sulfide deposit with concordant semi-massive to massive sulfide lens underlain by a discordant stockwork vein system and associated alteration halo. From Hannington and others (1998) and Galley and others (2007). Modified from Hannington and others (2005).
then can be used to improve interpretation of ground gravity surveys (Ford and others, 2007). Conductivity, the inverse of resistivity, also can be used to map overburden.
Induced polarization (IP) surveys measure the chargeability of the ground and the time variance in the response of the electromagnetic field, which is related to ability of the material to retain electrical charges. Induced polarization surveys are very effective in detecting disseminated sulfide bodies. Typically, these sulfides occur in the altered halo surrounding the massive sulfide ore body and may be associated with clays, which also produce significant IP responses (Ford and others, 2007).
The techniques associated with electromagnetic (EM) surveys, collected both on ground and in air, are the most common electrical methods employed in mineral exploration. Electromagnetic techniques can directly detect conductive features such as base metal deposits where significant contrasts in conductivity values occur between the ore bodies and their resistive host rocks (Thomas and others, 2000). Values for the conductivity of soils, rocks, and ore bodies, measured in milliSiemans per meter, span several orders of magnitude ranging from 3.57×109 mS/m for graphite to 5×108 mS/m for pyrrhotite to 0.01 mS/m for gravel and sand (Thomas and others, 2000). Both airborne and ground electromagnetic techniques are effective in detecting